Updated 18/08/16

Nanoscale Cover_2  Screen Shot 2016-08-02 at 17.11.49Cover Adv Func MaterCover PSSC



Selected Publications

  1. Chiappini, E. DeRosa, J.O. Martinez, X. Liu, J. Steele, M. Stevens, E. Tasciotti, Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization, Nature Materials 14, 532-539 (2015).[Cover Article].
    Summary: This work is the first use of nanoneedles for tissue engineering, and the first use of nanoneedles in vivo. It first attempts in vivo gene therapy with nanoneedles demonstrating a functional outcome, and thus providing a conceptual advancement towards their clinical translation. It demonstrates biodegradable nanoneedles as a versatile intracellular delivery platform in vivo, characterized by ease of use and a simple application strategy. It highlights the promise of this technology to address the clinical need associated with the transfer of biologically labile compounds such as nucleic acids through a minimally invasive procedure, and it opens the possibility of studying cell reprogramming in vivo through gene transfer to defined tissue regions.

  2. C. Chiappini*, P. Campagnolo, C. Almeida, N. Abassi-Ghadi, L. Chow, G. Hanna, M. Stevens*, Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles, Advanced Materials 27, 5147- 5152 (2015).
    Summary: This work represents the first use of nanoneedles for cancer detection and their first use with clinical samples. It proposes the first nanoneedle-based strategy that achieves sensing with single cell resolution highlighting a promising technology for minimally invasive intracellular quantification of enzymatic activity both in vitro and in vivo. This technology can be developed to address the clinical need for screening patients and providing guidance for further, more invasive diagnostics such as biopsies. The potential to map the intracellular milieu in vivo with minimal impact could lead to new materials for direct cell manipulation as well as improve rapid screening and stratification of patients in the context of chronic and degenerative diseases.

  3. Chiappini, E. DeRosa, J.O. Martinez, E. Tasciotti, M. Stevens. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface, ACS Nano 9, 5500-5509 (2015).
    Summary: This work is the first investigation of the temporal evolution of the cell-nanoneedle interface by novel electron microscopy methods combined with optical microscopy. It constitutes a groundwork study in the development of a fundamental understanding of the nanoneedle biointerface, which is necessary to engineer nanoneedle systems for cell manipulation in vitro and in vivo.

  4. Hembury, C. Chiappini, S. Bertazzo, T.L. Kalber, G. Drisko, O. Ogunlade, S. Walker-Samuel, K. S. Krishna, C. Jumeaux, P. Beard, C. S. S. R. Kumar, A. E. Porter, M. F. Lythgoe, C. Boissiere, C. Sanchez, M. Stevens, Gold–silica quantum rattles for multimodal imaging and therapy, Proc. Natl. Acad. Sci. USA, 112,1959-1964 (2015).
    Summary: This work presents the first synthesis of Au@Si rattle-like particle with Au nanoparticles and nanoclusters growth in-situ and demonstrates the first therapeutic and diagnostic use of Au nanoclusters. For the first time it presents a biomedical application of paramagnetic Au. This study solves a longstanding challenge in the fabrication of silica encapsulated gold nanostructures and illustrates a simple synthetic pathway for nanoparticles where multimodal imaging and therapeutic functionality is an inherent property of the resulting particle, without requiring multicomponent assembly and concurrent surface functionalizations.

  5. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Biodegradable porous silicon barcode nanowires with defined geometry, Adv. Func. Mater. 20, p2231 (2010). [Cover Article].
    Summary: Metal assisted chemical etch is a recently discovered strategy for anisotropic etch of silicon and other semiconductors. Its low cost, ease of use and reliability are rapidly transforming the fabrication of semiconducting nanowires for energy storage, photovoltaics and bioengineering. This work is the first systematic study of metal assisted chemical etch and provides guidelines for the rational design of silicon nanowires that have been followed by several groups internationally. The composition of matter developed in this work is the subject of an international patent. The techniques and the understanding developed from this study enabled nanoneedles fabrication.

  6. Chiappini, E. Tasciotti, J. R. Fakhoury, D. Fine, L. Pullan, Y. Wang, L. Fu, X. Liu, M. Ferrari. Tailored porous silicon microparticles: fabrication and properties, ChemPhysChem 11, p 1029 (2010).
    Summary: This study illustrates the fabrication of of shape-defined porous silicon microparticles for drug delivery and characterization of their material properties. The rational design of the porous structure is tailored to accommodate nanoparticle payloads and optimize their loading and release.

  7. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S. Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnol. 8, p61 (2013).
    Summary: 75 First development of synthetic nanoparticle with leukocyte-like function. Porous silicon particles coated with leukocyte-derived membrane display enhanced circulation time with targeting and transendothelial migration characteristic of the original leukocyte. This feature is exploited to target drug delivery to cancer cells across a model epithelial layer in vitro. This work opens the stage to the development of hybrid bionic systems for therapeutic applications.

Other Publications

  1. Todorova, C. Chiappini, M. Mager, B. Simona, I.I. Patel, M.M. Stevens, I. Yarovsky. Surface Presentation of Functional Peptides in Solution Determines Cell Internalization Efficiency of TAT Conjugated Nanoparticles. Nano Lett. 14, p5229 (2014).
  2. N. Xie, Y. Lin, M. Mazo, C. Chiappini, A. Sanchez-Iglesias, L.M. Liz-Marzan, M.M. Stevens. Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6, p12403 (2014).
  3. de la Rica, L.W. Chow, C.M. Horejs, M. Mazo, C. Chiappini, E.T. Pashuck, M.M. Stevens. A designer peptide as a template for growing Au nanoclusters. Chem. Comm. 50, p10648 (2014).
  4. O. Martinez, M. Evangelopoulos, C. Chiappini, X. Liu, M. Ferrari, E. Tasciotti. Degradation and biocompatibility of multistage nanovectors in physiological systems. J. Biomed. Mater. Res. A 102, p3540 (2014).
  5. O. Martinez, C. Chiappini, A. Ziemys, A. Faust, M. Kojic, X. Liu, M. Ferrari, E. Tasciotti. Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials, 34, p8469 (2013).
  6. Fine, A. Grattoni, R. Goodall, S.S. Bansai, C. Chiappini, S. Hosali, A.L. Van De Ven, S. Srinivasan, X. Liu, B. Godin, L. Brousseau, I.K. Yazdi, J. Fernendez-Moure, E. Tasciotti, H.J. Wu, Y. Hu, S. Klemm, M. Ferrari. Silicon micro- and nanofabrication for medicine, Adv. Healthcare Mater. 2, p632 (2013).
  7. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu. Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice, Adv. Func. Mater. 22, p 4225 (2012).
  8. M. Fan, E. De Rosa, M.B. Murphy, Y. Peng, C.A. Smid, C. Chiappini, X.W. Liu, P. Simmons, B.K. Weiner, M. Ferrari, E. Tasciotti, Mesoporous Silicon-PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering, Adv. Func. Mater. 22, p282 (2012).
  9. Chiappini, E. Tasciotti, R. Serda, L. Brousseau, X. Liu, M. Ferrari. Mesoporous silicon particles as intravascular drug delivery vectors, Phys. Stat. Sol. C 8, p1823 (2011). [Cover Article]
  10. De Rosa, C. Chiappini, D. Fan, X. Liu, M. Ferrari, E. Tasciotti. Agarose Surface Coating Influences Intracellular Accumulation and Enhances Payload Stability of a Nano-delivery System, Pharm. Res. 28, p1520 (2011).
  11. Tasciotti, B. Godin, J. Martinez, C. Chiappini, R. Bhavane, X. Liu, M. Ferrari. Near-infrared imaging method for the in-vivo assessment of the biodistribution of porous silicon particles. Molecular Imaging, 10, p56 (2011).
  12. E. Serda, B. Godin, E. Blanco, C. Chiappini, M. Ferrari. Multi-stage delivery nano-particle systems for therapeutic applications. BBA – Gen. Subj. 1810, p317 (2011).
  13. Tanaka, L.S. Mangala, P.E. Vivas-Mejia, R. Nieves-Alicea, A.P. Mann, E. Mora, H-D.Han, M.M.K Shahzad, X. Liu, R. Bhavane, J. Gu, J.R. Fakhoury, C. Chiappini, C. Lu, K. Matsuo, B. Godin, R.L. Stone, A.M. Nick, G. Lopez-Berestein, A.K. Sood, M. Ferrari. Sustained Small Interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, p3687 (2010).
  14. E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, J.L. Conyers, X. Liu, M. Ferrari. Cellular association and assembly of a multi-stage delivery system. Small 6, p1329 (2010). [Cover Article.]
  15. E. Serda, A. Mack, A.L. Van de Ven, S. Ferrati, K. Dunner, B. Godin, C. Chiappini, M. Landry, L. Brousseau, X. Liu, A.J. Bean, M. Ferrari. Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small 6, p2691 (2010).
  16. Ferrati, A. Mack, C.  Chiappini, X.  Liu, A.J.  Bean, M.  Ferrari, R.E.  Serda. Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale 2, p1512 (2010).
  17. Tanaka, B. Godin, R. Bhavane, R. Nieves-Alicea, J. Gu, X. Liu, C. Chiappini, J.R. Fakhoury, S. Amra, A. Ewing, Q. Li, I.J. Fidler, M. Ferrari. In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int. J. Pharm. 402 p190 (2010).
  18. Bouamrani, Y. Hu, E. Tasciotti, L. Li, Chiappini, X. Liu, M. Ferrari. Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome. Proteomics 10, p 496 (2010).
  19. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, M. Ferrari. Size and shape effects in the biodistribution of intravascularly injected particles, J. Controll. Rel. 141, p 320 (2010).
  20. Godin, J. Gu, R.E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. Liu, T. Tanaka, P. Decuzzi, M. Ferrari. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J. Biomed. Mater. Res. A. 94, p1236 (2010).
  21. Alexander, R. Azencott, B. Bodmann, A. Bouamrani, C. Chiappini, M. Ferrari, X. Liu, E. Tasciotti. SEM Image Analysis for Quality Control of Nanoparticles. In: Computer Analysis of Images and Patterns p. 590 (2009).
  22. E. Serda, J. Gu, R.C. Bhavane, X. Liu, C. Chiappini, P. Decuzzi, M. Ferrari. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomater. 30, p 2440 (2009).
  23. Gentile, C. Chiappini, D. Fine, R.C. Bhavane, M.S. Peluccio, M.M. Cheng, X. Liu, M. Ferrari, P. Decuzzi. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, p2312 (2008).
  24. Godin, J. Gu, R.E. Serda, S. Ferrati, X. Liu, C. Chiappini, T. Tanaka, P. Decuzzi, M. Ferrari. Multistage mesoporous silicon-based nanocarriers: Biocompatibility and controlled degradation in physiological fluids. CRS Newsletter 25 p9 (2008).
  25. Chiappini, P. Piseri, S. Vinati, P. Milani. Supersonic cluster beam deposition of nanostructured thin films with uniform thickness via continuously graded exposure control, Rev. Sci. Instr. 78, p 066105 (2007).

Book Chapters

  1. Chiappini, Porous silicon microneedles and nanoneedles, in Handbook of Porous Silicon, 2nd Edition, Springer International Publishing, (Ed. L. Canham), in press.
  2. Decuzzi, C. Chiappini, H. Santos, M. L. Coluccio, G. Perozziello, P. Candeloro, E. Di Fabrizio, F. Gentile, Nanoparticles for biomedical applications, in Springer Handbook of Nanotechnology, Fourth Edition, Springer International Publishing (Ed. Bharat Busharan), in press.
  3. Chiappini, MACE silicon nanostructures, in Handbook of Porous Silicon, Springer International Publishing, (Ed. L. Canham), p 171 (2014).
  4. Chiappini, C. Almeida, Silicon Nanoneedles for drug delivery, in Semiconducting Silicon Nanowires for Biomedical Applications, Elsevier, (Ed. J. Coffer), p 144 (2014).
  5. Serda, C. Chiappini, D. Fine, E. Tasciotti, M. Ferrari. Porous silicon particles for imaging and therapy of cancer. In: Nanostructured Oxides, (ed. C.S.S.R. Kumar) Vol. 2, Wiley-VCH (2008).
  6. Tasciotti, J. Martinez, C. Chiappini, R.C. Bhavane, M. Ferrari. Porous silicon particles for multistage drug delivery. In: Methods in bioengineering: Nanoscale Bioengineering and Nanomedicine, (ed K. Rege, I.L. Medintz), Artech House (2009).